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ABSTRACT

Discrete time aeroelastic models with explicitly

retained aerodynamic modes have been generated
employing a time marching vortex lattice aerodynamic
model. This paper presents analytical results from

eigenanalysis of these models. The potential of these
models to calculate the behavior of modes that

represent damped system motion (noncritical modes) in
addition to the simple harmonic modes is explored. A
typical section with only structural freedom in pitch is
examined. The eigenvalues are examined and

compared to experimental data. Issues regarding the
convergence of the solution with regard to refining the

aerodynamic discretization are investigated.
Eigenvector behavior is examined; the eigenvector
associated with a particular eigenvalue can be viewed
as the set of modal participation factors for that

particular mode. For the present formulation of the
equations of motion, the vorticity for each aerodynamic

element appears explicitly as an element of each
eigenvector in addition to the structural dynamic
generalized coordinates. Thus, modal participation of

the aerodynamic degrees of freedom can be assessed in
addition to participation of structural degrees of
freedom.

INTRODUCTION

A long-standing procedure for examination of
structural dynamic systems is to employ eigenanalysis.

It is becoming more commonly accepted to utilize the
same procedure for examination of aerodynamic
systems and aeroelastic systems 1' 2. In this paper,
aeroelastic
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eigenanalysis results are presented. This work is an
extension of previously published work 3"4 utilizing a
finite-wake, time-domain, discretized vortex lattice

aerodynamic model, coupled with time-domain
discretized structural dynamic, downwash and

aerodynamic forcing equations. In the previous
publications, results of aerodynamic parametric
variations were presented and the properties of the

aerodynamic model were examined in detail. In the
current work, the aeroelastic eigenanalysis properties
are examined from a similar perspective. The results

will be discussed first by examination of the eigenvalue
behavior, followed by examination of the eigenvectors.

As was pointed out in the previous publications, the
modes of the aerodynamic model are artifacts of the
discretization of the finite wake length. Because the

modes result from the approximations employed, their
validity is a function of the chosen discretization
scheme. Both the validity of the aeroelastic results and
the ease with which one can interpret the system

behavior will be shown to depend upon the
discretization.

One of the shortcomings of most linear aeroelastic

analysis procedures is the inability to calculate the
modes of the system when the motion is not simple
harmonic 5. 6. That is, under the assumptions of the

analysis, the modes of the system are only valid when

they are neutrally stable. These linear methods serve
well for examining the stability and the frequency of
the critical mode at the instability, but provide
insufficient information for examining damped

(noncritical) system. There are several notable
examples in the literature where noncritical mode
characteristics have been calculated, employing various
aerodynamic modeling techniques 7" 8. A summary of
this work can be found in Heeg 4. The current work

examines the potential of the eigenanalysis procedure,
applied to the discrete time vortex lattice model, to
calculate the behavior of modes that represent damped

system motion (noncritical modes) in addition to the
neutrally stable simple harmonic motion.

1

American Institute of Aeronautics and Astronautics



2001-1580

Aeroelastic instabilities are often said to occur because

the aerodynamics provide a coupling mechanism for
structural dynamic modes 9' 10. In the current work, we

examine the aeroelastic eigenvectors and their
progression with dynamic pressure. In the case of the

model presented, the mode shapes consist of the
generalized structural coordinates and the vorticities on
each aerodynamic element. The eigenvectors are

examined in various ways in attempts to distill
essential information regarding the coupling between
modes.

A typical section with only a rotational structural

degree of freedom (pitch) is analyzed in this paper.
The configuration was the subject of a wind tunnel

experiment; it is a typical section airfoil with only a
rotational structural degree of freedom, which is shown
to be torsionally divergent. The experimental results

are presented by Heeg in reference 4.

This paper is organized as follows. A recapitulation of
the aerodynamic model is presented. The aeroelastic

equations of motion and stability analysis method are
reviewed. The aeroelastic eigenvalues of the example
configuration are examined and compared with
experimental data. Trends in the aeroelastic
eigenvalues with variations in the aeroelastic model

discretization are discussed. Finally, the information
provided by the aeroelastic eigenvectors is examined.

AERODYNAMIC MODEL

A summary of the aerodynamic model and the
characteristics of the eigenvalues are presented here.
For a more thorough discussion, the reader is referred
to references 3 and 4. A Vortex Lattice solution to

Laplace's equation for incompressible two-dimensional
flow is utilized. The flow over an airfoil and in the

wake is modeled. The airfoil is represented as a 2-
dimensional flat plate. The airfoil and the wake are
spatially divided into elements; the vortex lattice kernel
function is utilized at a frozen instant in time, and

Kelvin's theorem is applied preserving the circulation
as time advances. Convection of vorticity in the wake
is explicitly modeled; dissipation of the vorticity is
included through use of a temporal relaxation factor
applied to the last element of the wake mode. Time-

marching equations are written, generating a

mathematical model of the flow that is both spatially
and temporally discretized, Eqn 1.

[A]{F} n+l + [B]{F} n ={W} n+l Eqnl

Once these equations are written, they inherently

contain the approximations of the finite wake and the
discretization. Heeg and Dowell 3 present a detailed

study of the effects of the aerodynamic model

discretization on the aerodynamic eigenvalues. The
size (Ax) and number (M on the wing, Nw_ in the

wake) of elements, and velocity (U) are related through
Eqn 2 and Eqn 3.

2b
Ax = _ Eqn 2

M

Ax
U =-- Eqn3

At

The time-marching aerodynamic equations are

analyzed subject to the boundary condition that the
downwash, w, is zero for all time. This is equivalent to

the flat plate representation of the wing being at zero
angle of attack. The eigenvalues of these uncoupled
aerodynamic equations are evaluated by applying a z-
transform to the discrete time equations. The discrete
time eigenvalues, z, are extracted from these

transformed equations and converted to the continuous
time domain through a zero older hold.

2, = log(z) Eqn 4
At

The eigenvectors are also extracted from the time-

marching equations. The continuous time eigenvalue
distribution for a representative case, with I0
aerodynamic elements on the wing and 90 in the wake,

is shown in Figure 3. This plot .was generating using a
value of I for reduced velocity (V), defined in Eqn 5.

U
V =- Eqn 5

oJ_

Reduced velocity, V, is defined as the velocity
normalized by the torsional mode frequency and the
semi-chord. The axes scale with velocity, but the

pattern does not change. The complex aerodynamic
eigenvalues are discretely spaced and arranged in
"arms" that emanate from the origin of the continuous
time complex plane and reach up and down in the left
half plane. Additionally, the real parts of the arms
asymptotically approach a limiting value.

The discrete time aerodynamic equations are rank
deficient by the number of aerodynamic elements

which are placed on the wing, M. This produces M
discrete time eigenvalues at the origin in the z-domain.
Transformation of a pole at origin into continuous time
results in a pole at negative infinity along the real axis.
The continuous time aerodynamic model thus contains

M eigenvalues at _ on the real axis.

2
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For the continuous time eigenvalue distribution, shown
in figure 1, the presence of positive aerodynamic

damping is evidenced by the arms lying in the left half
plane. Aerodynamic eigenvalues have been shown to
be artifacts of the discretization. The uncoupled

aerodynamic eigenvalues scale as the inverse of
velocity due to the presence of the time step in the
denominator of the zero order hold transformation

relationship shown in Eqn 4. These aerodynamic
eigenvalues exist in the model, even in the case where

there is no coupling with a structural model, as
exemplified in the above case where the downwash has
been set to zero.

For each of the presented eigenvectors, the amplitude
of the oscillations becomes larger toward the end of the
wake. Edwards presents vorticity distributions for

stable and unstable oscillatory modes in reference 8.

The eigenvectors can be thought of as time histories of
vorticity, where time progresses from right to left. As

Edwards points out, a snapshot of vorticity where the
amplitude is large at the end of the wake indicates a
stable motion. Large amounts of vorticity were shed

from the wing initially; that vorticity has propagated
downstream. Smaller amounts of vorticity shed from

the wing as time advances.

In previous work 3, the following observations were

made with regard to the aerodynamic model and the
resulting eigenanalysis results. The effects of
discretization are controlled by two independent
factors. The size of the elements determines the range

of frequencies covered by the eigenvalues. The
number of elements in the wake drives the damping;

increasing the number of complex aerodynamic modes
moves the eigenvalue arms closer to the imaginary
axis. The effects of size and number are shown to be

independent, as one controls the transformation from
discrete to continuous time, and the other controls the

discrete time eigenvalue pattern. The effect of the

discretized finite wake is to produce discretely spaced
eigenvalues, instead of a continuous line. As the wake

length is increased, the eigenvalues become more
closely spaced; the frequency spacing is approximated

using Eqn 6.

2M)
ACO=_-- Eqn 6

Lw,a,e

An aerodynamic eigenvector contains the vorticity for

each aerodynamic element associated with that mode.
Four aerodynamic eigenvectors are represented in
Figure 4. These "modal vorticities" are plotted as
functions of the chord-wise location of the associated

aerodynamic elements, normalized by the chordlength
and referenced to the wing mid-chord. The first mode,
a real mode, resembles a static pressure coefficient

distribution over the wing, with little participation from
the wake. The second mode is also a real mode

resembling a static pressure distribution over the wing,
but with significant wake participation. The remaining

aerodynamic modes are complex and are comprised
primarily of an oscillating wake. The wing vorticities
are insignificant compared to those in the wake. The
modes are presented in order of increasing frequency.
Each mode contains a single frequency; as the
frequency increases or as the mode number is advanced
more oscillations are observed in the wake.

A subtlety regarding the aerodynamic eigenvectors is
their variance with reduced velocity. The effect of

doubling the reduced velocity is to halve the time
period represented by each vorticity snapshot and

thereby double the frequency associated with that
eigenvector. There are two points to be made: 1) the
eigenvectors, which represent spatial distributions of

vorticity, are invariant with the reduced velocity, but 2)
the period of time represented by the vorticity snapshot

changes with reduced velocity. These points follow
from previous work, where it was shown that the
eigenvectors of the continuous and discrete time
systems are identical 4. The eigenvector associated with
a mode, whether it is in discrete or continuous time, is

a spatial distribution of vorticity, as exemplified by
Figure 4. The reduced velocity does not appear in the
discrete time aerodynamic equations; these equations

and their eigensolution are applicable at all reduced
velocities. The influence of the reduced velocity

appears in analysis of the continuous time system
because the time step size appears in the denominator
of the transformation law given in Eqn 4. The time

period over which the vorticity convection snapshot
occurs is the number of wake elements multiplied by

the time step size. Rearrangement of Eqn 2, Eqn 3 and
Eqn 5 shows that the time step size is proportional to
the inverse of reduced velocity. Thus, doubling the
reduced velocity halves the time step size, halving the

time period of the vorticity snapshot, doubling the
frequency associated with that eigenvector. So,
although the eigenvector is invariant with reduced

velocity, interpretation of the information does change.

AEROELASTIC MODEL

Attention is now turned to examining the coupled
aeroelastic system. The aerodynamic equations

discussed previously are now considered in
conjunction with a time-marching model of the
structural dynamic behavior. The interactions between
structural motion and aerodynamic forces are

incorporated through two fundamental relationships:
structural loads due to aerodynamics are produced by

3
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unsteady vorticity on the wing; downwash is induced

on the airfoil by the structural motion. Combining
these relationships produces the governing equation for
an aeroelastic system, Eqn 7, where q is the vector of
generalized structural coordinates.

A simplified aeroelastic system is utilized in this study.
The typical section, Figure 5, is a structural and
aerodynamic idealization where its motion and the
airflow about it can be represented as two-dimensional.

The airfoil section is considered rigid and its permitted
motion limited to rotation about a fixed axis. This axis

of rotation is termed the elastic axis; its position,
denoted e, is measured positive aft from the center of
pressure. The structural dynamic stiffness of each

mode is represented by a linear spring constant. The
geometric parameters are illustrated in Figure 5; the
non-dimensional parameters of interest are defined
Table 1. Table 1 also provides the numerical values of
the parameters for the typical section to be analyzed.

AEROELASTIC EIGENVALUES

The stability of the aeroelastic system was determined
through eigenanalysis of the equations of motion for a

series of reduced velocities. The initial stability
analysis was performed using an aerodynamic

discretization with 10 elements on the wing and 90
elements in the wake; the resultant continuous time

root locus is shown in Figure 6. For clarity, only the

region near the origin is presented. The figure shows
the eigenvalues progressing as the reduced velocity is
increased. There are many additional complex modes
which originate in the aerodynamics, which are off the
scale of the plot. There are also eigenvalues at
negative infinity, not shown in the figure, the number

of which is the same as the number of aerodynamic
elements on the wing.

This configuration destabilizes at zero frequency,
termed divergence. The eigenvalues at the divergence
reduced velocity, 3.8, are distinguished in the figure by
square symbols. This analysis indicates that the

dynamic mode still exists with a nonzero frequency
when the system becomes unstable. At this velocity,
the dynamic mode is a coupled structural and

aerodynamic mode; the modal content and resultant
system behavior will be addressed subsequently.

From the aeroelastic root locus, the complex primarily

aerodynamic modes can be readily identified. The
uncoupled aerodynamic eigenvalues were presented in

Figure 3, for a reduced velocity of 1.0. As velocity
increases, these eigenvalues migrate along lines of

constant damping. Several lines of constant damping
have been superimposed on the aeroelastic root locus,

Figure 6, to illustrate this point. Although all modes
shown in the aeroelastic root locus belong to the
coupled system, there is relatively little influence of the

structure on what originated as complex aerodynamic
modes. This feature will be examined further in terms

of the aerodynamic parameterization and through
eigenvector characteristics.

Increasing velocity produces a migration in the
structural dynamic (in this case, pitch) mode also. The

coupled mode that originates as the structural dynamic
mode will be referred to here as simply the dynamic
mode of the system. This mode is a pure structural

mode only at zero airspeed. For any non-zero velocity,
it and all other modes are strictly speaking aeroelastic
modes. The lowest reduced velocity for which this
system was analyzed was 0.1. The dynamic mode for
this nearly-zero velocity is indicated by a solid triangle
in Figure 6 at 49.5 rads/second, the torsional natural

frequency. Increasing velocity produces an ever larger
aerodynamic effect on the on the pitch mode. This
aeroelastic coupling causes the dynamic mode
frequency to decrease as velocity increases. This trend

holds true until the system becomes unstable at a
reduced velocity of 3.8, when a zero frequency root,

aerodynamic in origin, migrates across the imaginary
axis. Once the static mode destabilizes, the frequency
of the dynamic root, structural in origin, no longer
tends toward zero.

Because the system diverges, the real roots,
aerodynamic in origin, are of primary concern. Two

real poles originate from the present aerodynamic
model. For increasing airspeed, both roots initially
become more stable. However, at approximately 75%
of the divergence reduced velocity, one root changes
direction and eventually destabilizes. The mechanism

responsible for the divergence of this aeroelastic model
has its origin in the aerodynamic terms.

A wind tunnel test of this typical section configuration
was conducted by Heeg a. Figure 5 shows experimental

data for the dynamic mode, plotted with the analytical
results. Good agreement was obtained, with regard to

the frequency of the dynamic mode. The damping
comparison does not fare as well.

AERODYNAMIC PARAMETRIC VARIATIONS

Variation of wake length, maintaining element si_e

4
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Discrete aerodynamic eigenvalues arise in this model

because finite approximations are utilized. The
aerodynamic model contains complex modes, with
different frequency and damping, dependent upon the

discretization. The aerodynamic model also contains
modes with eigenvalues at zero in the discrete time

domain, or at negative infinity in the continuous time
domain. These aerodynamic model characteristics,
which are direct results of the discretization chosen,

strongly affect the eigenvalues associated with the
primary aeroelastic modes.

A brief study is presented to address the effects of
discretization on convergence and modal identity.

Different aerodynamic discretizations are used to
generate aeroelastic models. The eigenvalues of the
uncoupled aerodynamic equations are compared to the

eigenvalues produced by the coupled aeroelastic

equations.

The first effect to be examined is the influence of the

number of elements in the wake, given a fixed number
of elements on the wing. Thus, for this set of

variations, the computational domain is extended while
the element size is maintained. All cases for this

parametric variation contain I0 elements on the wing.
The wing semi-chord is 4 inches, producing a spatial

element size of 0.8 inches from Eqn 2. The analyses
were conducted at the divergence reduced velocity, 3.8,
resulting in the time step size of 0.001063 seconds

from Eqn 3 and Eqn 5. The aerodynamic and
aeroelastic eigenvalues that result from four

discretizations are presented in Figure 8. The four
discretization cases shown contain 90, 270, 360 and

1440 wake elements, producing wake lengths of 9, 27,
36 and 144 wing chord lengths respectively. In the
figure, the eigenvalues of the uncoupled aerodynamic

system are plotted as open symbols; the eigenvalues of
the coupled aeroelastic system are plotted as solid
symbols. Figure 8 is now discussed in detail.

The discretization case with 90 elements in the wake is

discussed first. In Figure 8, the eigenvalues for this
case are represented by circles. With 90 elements in
the wake, the complex aeroelastic eigenvalues are
nearly identical to complex aerodynamic eigenvalues,
as shown by the solid circles and the open circles lying

on top of each other. The exception to this statement is
the presence of the aeroelastic mode, indicated by the
solid circle at -16.4+j26.3, which does not appear in

the uncoupled aerodynamic system. This mode
corresponds to the mode which originated as the
structural dynamic mode also seen in Figure 6, which
presents the variation with reduced velocity for this
discretization.

In Figure 8, the aerodynamic and aeroelastic
eigenvalues lying on the real axis differ significantly
from each other. For this discretization case, there are

2 real aerodynamic eigenvalues present, indicated by

open circles on the real axis at -3.5 and -34.6. The
real aeroelastic eigenvalues are at the origin, indicating
divergence of the system, and at-10.1. The difference
between the aerodynamic and aeroelastic eigenvalues

is indicative of coupling between the structure and the

aerodynamics.

Thus, with the 90-element-wake discretization of the

aerodynamic model, identification of the primary
aeroelastic modes is straightforward. This analysis
indicates that there are three modes which are affected

significantly by the coupling between the
aerodynamics and the structural dynamics: the

structural-dynamic-originated mode, the static
divergence mode and a static stable mode. Further
evidence of this "modal clarity" will be provided in the

discussion of the eigenvectors later in this paper.

Consider now the case where the number of elements

in the wake is 270. This data is shown in Figure 8 by

the square symbols. Because there are more
aerodynamic elements in the model, there are more
aerodynamic modes present in the system. Recall from
the discussion of the aerodynamic parametric
variations that an increase in the number of complex

aerodynamic modes moves the aerodynamic
eigenvalue arms closer to the imaginary axis. Also
from that discussion, recall that increasing the wake

length results in an increase in the modal density. Both
of these trends are observed in Figure 8 by comparing
the 270 element case to the 90 element case.

The complex aeroelastic eigenvalues associated with
the 270 element discretization are nearly identical to

the complex aerodynamic eigenvalues, as was observed
in the 90 element case. Again, the presence of a

complex aeroelastic eigenvalue in excess of the
complex aerodynamic eigenvalues signals the presence
of the dynamic aeroelastic mode that originated as the
structural dynamic mode, indicated by the solid square
at -14.4+j24.9. Through comparison with the 90
element case, it is seen that increasing the number of
elements in the wake causes the complex aeroelastic

eigenvalue to shift slightly. Also, the next higher
frequency aeroelastic eigenvalue is slightly separated
from the nearest aerodynamic pole. The difference is
small, but the solid and open squares, with imaginary

parts near 30 rads/sec, do not overplot. This difference
signals the onset of "modal obscurity." Modal
obscurity is defined by the structural dynamic
originated eigenvalue no longer being clearly

distringuishable from the complex primarily

5
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aerodynamic eigenvalues of the aeroelastic system.
Concerning the real eigenvalues, there are now 3 real

aerodynamic poles, and also 3 real aeroelastic poles.
Aeroelastically, they show the divergent mode, and two
additional static modes.

As the number of elements in the wake increases, more

of the aeroelastic eigenvalues deviate from the

aerodynamic eigenvalues. The lower frequency
eigenvalues differ by larger and larger amounts from
those for the discretizations with fewer wake elements.

Thus, the certainty with which a structural dynamic
participating mode can be identified diminishes and,
ultimately, disappears. This is counter-intuitive. The
irony here is that as more elements are added to the

wake, presumably to improve the approximations, the
less clarity there is regarding the individual
components from which the model is comprised.

The case where there are 360 elements in the wake

demonstrates modal obscurity effectively. In this case,
there are two complex eigenvalues of the aeroelastic

system (-12.7+ j22.2 and -16.1+j31.1) in the vicinity
of the structural-dynamic originated eigenvalues
generated by the previously discussed discretizations.

Both of these eigenvalues are fairly well separated
from any aerodynamic poles. Additionally, the number
of complex aeroelastic eigenvalues is now equal to the
number of complex aerodynamic poles. Neither of
these eigenvalues can be said to be the structural

dynamic participating mode.

Further increasing the number of elements in the wake,
to 1440, produces an even more modally obscure
picture. The data associated with this discretization is

shown in Figure 8 and reproduced on an expanded
scale in Figure 9. This plot shows that many of the
aeroelastic eigenvalues deviate significantly from the
aerodynamic eigenvalues. It is thus impossible from
this plot to identify a single mode which is

representative of the structural dynamic damping and
frequency. From this plot, it is also evident that the

eigenvalues become quirky at the uncoupled structural
dynamic frequency, 49.5 rads/sec, even though this
model is constructed at the divergence reduced

velocity, 3.8. At a velocity this high, coupled system
behavior would not be expected to appear at the air-off
natural frequency. The source of this characteristic has
not been identified to date.

Variation of aerodynamic element si_e, maintaining
wake length

A second set of parametric variations is now presented.
Figure 10 shows aerodynamic and aeroelastic
eigenvalues that result from four new discretizations of

the aerodynamic system. In these cases, the wake

length has been held constant at 9 chord lengths while
the number of wake and wing elements increase. This

set of parametric variations results in an increasingly
finer aerodynamic grid with increasing number of
elements, while holding the computational domain at a

fixed size. The number of elements on the wing

controls the spatial and temporal discretizations, Eqn 2,
Eqn 3 and Eqn 5. The spatial and time step sizes thus
vary among the different discretization cases,
becoming smaller as the number of elements increases.

The four discretization cases shown contain 90, 270,
360 and 1440 wake elements. Given that the wake

length is held constant at 9 wing chords, the wing is
partitioned such that the number of elements on the

wing, M, equals 10, 30, 40 and 160 elements
respectively. The eigenvalues for these variations are

again presented for a single velocity, corresponding to
the divergence reduced velocity, 3.8. In the figure, the
eigenvalues of the uncoupled aerodynamic system are

plotted as open symbols; the eigenvalues of the
coupled aeroelastic system are plotted as solid
symbols.

Examining the eigenvalues in Figure 10, it does not at
first appear that the complex aerodynamic eigenvalue
arms follow a logical progression with increasing
number of elements. It turns out, however, that there

are two competing changes to the model, which result
in this eigenvalue distribution. Recall that the model
has been formulated in the discrete time domain, that
is, the equations of motion were written at distinct time

steps. The discrete time eigenvalues, z, are computed
and then transformed by a zero order hold into the
continuous time domain. The zero order hold

transformation law is given by Eqn 4.

When the eigenanalysis of the equations is performed
in the discrete time domain, the damping of the
eigenvalues monotonically decreases as elements are
added to the wake. That is, the magnitudes of the

discrete time eigenvalues, z, increase towards unity.
The corresponding values of the logarithm of z (the
numerator of Eqn 2) decrease in magnitude. As
elements are added to the wing, the time step size (the
denominator of Eqn 2) decreases. The overall effect is

that increasing the number of elements initially makes
the continuous time domain eigenvalues more highly
damped, and then as the model is further discretized,
the eigenvalues become more lightly damped. These
effects are present for both the eigenvalues that

originate as aerodynamic modes and the eigenvalue
which originates in the structural dynamic model. To
see how these effects manifest themselves for the

structural dynamic participating mode, a blow up of
this region of the root locus is shown in Figure 11.

6
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The structural dynamic originated eigenvalue varies
somewhat with the discretization, but for the number of
elements chosen for examination, it is always clear

which eigenvalue primarily captures this behavior.
The aeroelastic eigenvalues are much closer to the

aerodynamic eigenvalues than shown in the previous
cases.

Interpreting the analysis

The following speculations are offered with regard to
the parametric variations presented. While the static
aeroelastic characteristics are well captured, even with

very coarse discretizations, the dynamic (complex)
characteristics require refinement of the wing elements.

The eigenvalue that originated in the structural

dynamic mode tends to be the most physically
significant of the complex modes. Despite the

aerodynamic model eigenvalues being artifacts of the
discretization, the coupled aeroelastic model produces
a destabilizing static mode and a dynamic mode that
represent the physical system. It is anticipated that the

structural response will be characterized by the
frequency and damping of the dynamic mode
eigenvalue when subjected to the aerodynamics at this

reduced velocity.

is a little deceptive, because the frequencies associated

with the eigenvalues are very different. The damping
is controlled by the number of elements in the wake. A
line of constant damping, which passes through the ith

eigenvalue for the M=10 case will also pass through
the ith eigenvalue for the M=160 case. However, it
will be at a much larger frequency. With regard to the

effect on the structural dynamic originated eigenvalue,

it appears the damping of the aerodynamic eigenvalues
within the vicinity of the aeroelastic mode is the

important factor.

Interpreting Figure 8 and Figure 10 together leads to
the idea that convergence and modal clarity may be an
issue of modal proximity. If the aerodynamic modes
near the structure-originated aeroelastic mode

frequency are lightly damped, then the structurally
originated mode is obscured; its effects get smeared

among several or many modes.

These studies were concluded in an unsatisfying way.
It cannot be stated that the aeroelastic eigenvalues have

definitively converged. Neither have the specific
causes of the modal obscurity been identified.
Potential sources of numerical errors due to computer

round off and approximations in the discrete time
tranformation have been investigated, but the sources
of these behaviors have not been identified.

For the cases where the wake lengths and the numbers

of elements in the wake are small, the dynamic mode is

fairly easily identified. Increasing the length of the
wake by adding aerodynamic elements produces
eigenvalues where several of the modes appear to

capture portions of the structural dynamic behavior.
For cases with many wake elements, exemplified by
the 10 wing element and 1440 wake element case, the
structural dynamic originated mode does not appear

separately from the aerodynamic originated poles. It
has been effectively obscured among the other
aeroelastic eigenvalues.

Holding the wake length constant at 9 chords and

increasing the number of elements in the wake
produced a much different result. For all
discretizations considered, no modal obscuring

occurred. Through additional parametric variations, it
has been observed that as the wake length gets longer,
the modal obscurity creeps in at a lower number of
elements.

Data from the first set of variations can be compared to
the data from the second set. Consider the cases where
there are 1440 elements in the wake. These cases with

10 and 160 elements on the wing appear to have

significantly different characteristics. The comparison

AEROELASTIC EIGENVECTORS

The eigenvector associated with a particular eigenvalue
can be viewed as the set of modal participation factors
for that mode. The eigenvector components are the

degrees of freedom specified in the equations of
motion. Here, the equations of motion were
formulated such that the degrees of freedom are the

structural dynamic generalized coordinates (or and & )

and the vorticity on each aerodynamic element (_, for

j=l, 2 ..... (M+Nwake)).

Before proceeding to examination of the eigenvectors,
we consider how they should be scaled. While the

components of a given eigenvector have constant
magnitude and phasing relative to the other
components of that eigenvector, each eigenvector is

unique only to within multiplication by a complex
number. It is desirable to be able to examine the

similarities and differences among modes and at
different velocities. To enable this examination, the

arbitrariness must be removed. In this analysis, each

eigenvector is normalized such that it has magnitude of
1, and the phase of all components is relative to the
first displacement generalized coordinate. That is, the
generalized displacement of the structural degree of

freedom (pitch) is a real, positive number for every
mode for every velocity.
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The aeroelastic eigenvectors are studied from several

perspectives. In past work, direct examination of the
modal vorticity has been presented. 1 In this paper, two
different ways of examining the eigenvectors are
discussed. The first approach taken is to examine the

scalar products produced by subsets of the eigenvector
components. Trends in these scalars are examined for

different discretizations and as airspeed changes.
Secondly, dynamic and static modal moments are then
calculated and discussed.

Scalar Products of Eigenvector Component Subsets

Structural Dynamic Portion of All Modes For this
configuration, the structural dynamic portion of each

eigenvector consists of one generalized displacement
and one generalized velocity. In this case, these are the

pitch angle, o_, and pitch rate, &. As discussed above,

the eigenvectors have been scaled such that the phase

of the generalized displacement, o_, is zero. The

generalized displacement thus will always be a positive
real value for every mode for every velocity. For this
simple system, the generalized velocity component for
any eigenvector is related directly to the generalized
displacement by the eigenvalue.

dti = Aioti Eqn 8

Thus, knowledge of the structural dynamic portion of
any eigenvector allows direct calculation of the

corresponding eigenvalue. Alternatively, knowledge of
an eigenvalue provides instant knowledge of the

relative magnitude and phasing of _ and 6_.

As an example, a mode that has a purely imaginary

eigenvalue has a velocity component which lags the
displacement by 90°. Phrased in a different way, the
velocity component will be purely imaginary since the
displacement component has been restricted to be
purely real.

In an attempt to discern the importance of the structural
participation in each mode, the magnitude of the modal
participation of the structural portion, MPs, of the

eigenvectors is calculated. This is done by forming the
scalar or inner product for each mode as specified in
Eqn 9. In this equation, H indicates the Hermitian
(complex conjugate transpose ) of the vector.

Eqn 9

This particular criterion is examined at the divergence
reduced velocity for several of the aerodynamic
discretizations analyzed earlier. Three discretizations

were chosen to revisit. The magnitudes of the

structural participation are plotted in Figure 12 as
function of the modal frequency.

The first discretization contains 10 aerodynamic
elements on the wing and 90 in the wake. It was
previously asserted that the structural participating
modes could be identified by simply comparing the

aeroelastic eigenvalues with the aerodynamic
eigenvalues. The modes which differed significantly

were those in which the aeroelastic coupling was
important and for which motion of the structure would

be anticipated. Examining the structural modal
participation, Figure 12a, only one mode contains

significant structural participation, identifying it as the
primary dynamic mode associated with motion of the
structure.

The second discretization contain 40 elements on the

wing and 360 elements in the wake. Recall from the

eigenvalue distribution shown in Figure 6, that two of
the aeroelastic modes were shown to deviate

significantly from the aerodynamic modes. The plot of
the structural participation in Figure 12b shows that
both of these modes contain structural participation.

The divergent mode's structural participation is not
shown in the plot; it is significantly larger than the
participation of the dynamic modes. The stable static

mode is labeled in the figure as such.

The third discretization contains 160 elements on the

wing and 1440 elements in the wake. The modal

obscurity that existed in the eigenvalues is reinforced
in the eigenvector characteristics in Figure 12c. The

structural participation is smeared among many modes,
rather than pointing to a single mode which captures
the dynamic mode of the structural motion. Again, the

divergent mode is not shown and the stable static mode
is labeled.

Examining the magnitude of the modal contributions
from the structural components separates the modes

with significant aeroelastic coupling from those that
remain primarily aerodynamic. This same information
can be extracted by examining the portion of the
eigenvector containing vorticity on the wing.

Modal Moment Comparison
The configuration being analyzed destabilizes in

divergence. Divergence is classically explained as
occurring when the static aerodynamic moment
exceeds the static structural restorative moment that

can be produced. The structural and aerodynamic
moments associated with individual modes can be

calculated by using the eigenvector information. The
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static structural modal moments, Ms, corresponding to
each mode, denoted i, were calculated using the static

moment equation and the modal results for angular

displacement, Eqn 10.

Msi = Kcr_i Eqn 10

The static aerodynamic modal moments, MA, are
calculated in similar fashion, employing the static

aerodynamic equation, Eqn 11.

MS i =qSeCLa(_i +Olrigid) Eqn 11

The results from these calculations are compared in

Figure 13.

In this comparison, the pitch angle component of each

eigenvector was employed. This was the pitch angle,

_, used in computing both the structural and the
aerodynamic modal moments, Eqn 10 and Eqn 11. The
aerodynamic moment is a function of the total angular
rotation of the airfoil, not just the elastic portion of the
deflection. The structural moment is a function of only

the elastic portion of the deflection. By applying the

same angle in both calculations, the aeroelastic
amplification factor is in evidence and explains the
difference between the calculated static structural and

static aerodynamic moments. For each velocity, the
ratio of the aerodynamic to structural moment is a ratio

of dynamic pressure to divergence dynamic pressure.

The difference between the dynamic moment and the
static moments are now discussed. The fundamental

difference is that the static moments neglect all time
derivatives; the rate term of the structural dynamic

freedoms, &, is neglected. The aeroelastic equations
of motion were formulated by setting the dynamic
moment (inclusive of time derivative terms, and

expressed in terms of the vorticities) produced by the
aerodynamics equal to the dynamic moment acting on
the structure (inclusive of time derivative terms). The

dynamic equality holds for each mode individually, or
for the summation of modes. Thus, for a specified

mode, the dynamic modal moments are equal for the
aerodynamic and structural calculations.

The dynamic modal moments associated with the

divergent mode and the dynamic aeroelastic mode are
compared to the static modal moments in the figure.
The difference between the static and dynamic

moments, which results directly from exclusion of the
time derivatives in the static calculations, is the

oscillatory portion of the motion. Examining the
dynamic aeroelastic mode first, it is observed that there
is a large oscillatory component, subcritically. This is
illustrated by the large difference between the static

structural moment and the dynamic moment for the
same mode.

Another significant difference between the static
moment and the dynamic moment occurs

supercriticaUy, observing the divergent mode. The
static equations enforce a neutral stability assumption.
Because the static mode is unstable, there is a large
difference between the moments calculated from the

static and dynamic equations.

When a mode is neutrally stable, the motion is simple
harmonic and the static and dynamic modal moments

agree. This is observed by examining the divergence
mode at the divergence reduced velocity, 3.8, and

examining the dynamic mode at zero reduced velocity.

CONCLUDING REMARKS

The formulation of the aeroelastic equations of motion

as described herein has provided eigenvalues
associated of the behavior of modes that represent

damped system motion (noncritical modes) in addition
to neutrally stable motion. This formulation has been
shown to be statically consistent as the aerodynamic
discretization is refined, but not consistent in terms of

the dynamic properties. The dynamic results did not

converge as the aerodynamic discretization was refined
and in fact, the identity of the modes became obscured.

The modal identity was investigated by consideration
of both the eigenvalues and the eigenvectors. The
aeroelastic eigenvalues were compared to the

aerodynamic eigenvalues. Using a well-behaved
discretization produces an eigenvalue pattern where
very few modes of the aeroelastic system differ from
the modes of the aerodynamic system. The ones that

differ significantly were identified as the primary
aeroelastic modes. The eigenvectors provide

quantitative information which conveys this same
message. Examining the magnitude of the modal
contributions from the structural components separates
the modes with significant aeroelastic coupling from
those that remain primarily aerodynamic.

Eigenvector behavior was examined. Information
obtained from the eigenvalues and eigenvectors can be

used to complement each other. The eigenvectors can
be used to discern the information that is contained in

the eigenvalues, and can provide information with
regard to modal content of the aeroelastic modes.
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Quantity

Pitch mode

frequency
(rads/sec)

Nondimensional
distance from

aerodynamic
center to elastic

axis)

Mass ratio

Non-

dimensional
radius of

gyration

Semichord

(inches)

Symbol Definition

e/b e/b

/.t m/(l P_i_b2)

r_ _--_mb2

b

Span (inches) i

Table 1 Parameters of typical section

Value

49.5

0.375

4

21
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